Negative sectional curvature and the product complex structure
نویسندگان
چکیده
منابع مشابه
Negative sectional curvature and the product complex structure
Let M = M1 ×M2 be a product of complex manifolds. We prove that M cannot admit a complete Kähler metric with sectional curvature K < c < 0 and Ricci curvature Ric > d, where c and d are arbitrary constants. In particular, a product domain in Cn cannot cover a compact Kähler manifold with negative sectional curvature. On the other hand, we observe that there are complete Kähler metrics with nega...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولOn the Canonical Line Bundle and Negative Holomorphic Sectional Curvature
We prove that a smooth complex projective threefold with a Kähler metric of negative holomorphic sectional curvature has ample canonical line bundle. In dimensions greater than three, we prove that, under equal assumptions, the nef dimension of the canonical line bundle is maximal. With certain additional assumptions, ampleness is again obtained. The methods used come from both complex differen...
متن کاملThe Cross Curvature Flow of 3-manifolds with Negative Sectional Curvature
We introduce an evolution equation which deforms metrics on 3-manifolds with sectional curvature of one sign. Given a closed 3-manifold with an initial metric with negative sectional curvature, we conjecture that this flow will exist for all time and converge to a hyperbolic metric after a normalization. We shall establish a monotonicity formula in support of this conjecture. Note that in contr...
متن کاملExamples of Riemannian Manifolds with Non-negative Sectional Curvature
Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S × S, also fit into this subject. For non-negatively curved manifolds, there are a number of obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2006
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2006.v13.n3.a13